Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation.

نویسندگان

  • Te Du
  • Zhiyuan Han
  • Guoying Zhou
  • Bernard Roizman
چکیده

The key events in herpes simplex virus (HSV) infections are (i) replication at a portal of entry into the body modeled by infection of cultured cells; (ii) establishment of a latent state characterized by a sole latency-associated transcript and microRNAs (miRNAs) modeled in murine peripheral ganglia 30 d after inoculation; and (iii) reactivation from the latent state modeled by excision and incubation of ganglia in medium containing anti-NGF antibody for a timespan of a single viral replicative cycle. In this report, we examine the pattern of synthesis and accumulation of 18 HSV-1 miRNAs in the three models. We report the following: (i) H2-3P, H3-3P, H4-3P, H5-3P, H6-3P, and H7-5P accumulated in ganglia harboring latent virus. All but H4-3P were readily detected in productively infected cells, and most likely they originate from three transcriptional units. (ii) H8-5P, H15, H17, H18, H26, and H27 accumulated during reactivation. Of this group, only H26 and H27 could be detected in productively infected cells. (iii) Of the 18 we have examined, only 10 miRNAs were found to accumulate above background levels in productively infected cells. The disparity in the accumulation of miRNAs in cell culture and during reactivation may reflect differences in the patterns of regulation of viral gene expression during productive infection and during reactivation from the latent state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and...

متن کامل

PCR detection of thymidine kinase gen of latent herpes simplex Virus type 1 in mice trigeminal ganglia

  Herpes simplex virus type 1 establishes a latent infection in the peripheral nervous system following primary infection. During latent infection, virus genome exhibit limited transcription, with the HSV LATs consistently detected in latency infected ganaglia. Following ocular infection viral latency develops in the trigeminal ganglia. In this study PCR has been used for detection of HSV-1 nuc...

متن کامل

Towards an Understanding of the Herpes Simplex Virus Type 1 Latency-Reactivation Cycle

Infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system. Recurrent ocular shedding can lead to corneal scarring and vision loss making HSV-1 a leading cause of corneal blindness due to an infectious agent. The primary site of HSV-1 latency is sensory neurons within trigeminal ganglia. Periodically, reactivation from latency occur...

متن کامل

Relationship of herpes simplex virus genome configuration to productive and persistent infections.

Infection of susceptible cells by herpes simplex virus (HSV) can lead to productive infection or to latency, where the genomes persist in the nuclei of peripheral neurons in a quiescent state. Using the HSV strain d109, which does not express any viral genes and thus establishes a quiescent state in most cells, we observed that a fraction of genomes circularized upon infection. The expression o...

متن کامل

A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.

Herpes simplex virus (HSV) persists in the human population by establishing long-term latent infections followed by periodic reactivation and transmission. Latent infection of sensory neurons is characterized by repression of viral productive-cycle gene expression, with abundant transcription limited to a single locus that encodes the latency-associated transcripts (LATs). We have observed that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2015